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1. Spectral volumes as image-space modal
bases

In this section, we provide details on the connection between
our predicted spectral volumes and image-space modal bases,
which can be used to simulate interactive dynamics through
modal analysis. We refer readers to the original work in com-
puter graphics and structure engineering for more thorough
theory and analysis [3, 5, 16, 18]. In particular, we treat the
pixels of the input image as a set of points (with cardinality
|P |) that are linked to each other via mass-spring-damper
system. Starting from an object (modeled as a harmonic os-
cillator) at rest, that object’s motion response to an external
force f(t) follows the equation of motion:

M ü(t) + Cu̇(t) +Ku(t) = f(t) (1)

where u is the motion displacement of a given scene rep-
resented as a vector of size |P |, and M , C, and K are the
mass, damping and stiffness matrices respectively, dictating
the intrinsic dynamics of the object [16].

One can transform this equation of motion into modal
space, in which M , C, and K reduce to diagonal matrices
and we can decouple the equation of motions into a set of
|P | independent single-degree-of-freedom systems:

q̈i(t) + ciq̇i(t) + kiqi(t) =
fi(t)

mi
(2)

where mi, ci, and ki are the diagonalized elements of the
mass damping and stiffness matrices in modal space; and qi

and fi correspond to the motion displacement u and force
f in modal space. As in prior work, we do not directly esti-
mate these matrices, but instead only use the intermediate
modal space to derive equations of response. We can fur-
ther simplify Equation 2 under the common assumptions of
Rayleigh damping: ci = αmi + βki, where we empirically
set α = 0.4 and β = 0.08 in our case. This gives rise to

q̈i(t) + γiq̇i(t)+ω
2
i qi(t) =

fi(t)

mi
(3)

ω2
i =

ki
mi

, γi = α+ βω2
i (4)

where ω is the damped natural frequency.

Moreover, Davis et al. [4] shows that the temporal Fourier
transform of per-pixel motion trajectory is approximately
proportional to the image-space projection of mode shapes
at resonant frequencies. Therefore, we can treat the spectral
volume as a basis and interpret the modal displacement qi

as the displacement of the object, in order to model and sim-
ulate image-space object dynamics. In particular, the final
displacement of a pixel p in image-space, Ft, can be written
as a sum of modal displacements weighted by the corre-
sponding coefficients in the spectral volume over selected
frequency bands fj :

Ft(p) =
∑
fj

Sfj (p)qfj (t). (5)

In our setting, we use all predicted frequency bands from
our latent diffusion modal as a basis in order to to avoid
manual mode selection performed in prior work. To simu-
late complex modal displacement qfj ,t, we perform explicit
Euler integration over Equation 4 to update the modal dis-
placement, velocity, and acceleration over time:

q̈i(t+ δt) =
fi(t)

mi
− γiq̇i(t)− ω2

i qi(t) (6)

q̇i(t+ δt) = q̇i(t) + δtq̈i(t+ δt) (7)
qi(t+ δt) = qi(t) + δtq̈i(t+ δt) (8)

where we set mi = 1 throughout our experiment.
Further, we project force vectors into modal space in order

to initial the complex modal displacement. In particular, as
in original work of Davis et al., we compute the magnitude
of the initial state of the modal displacement as

||qfj (0)|| = ||
f(0)

||f(0)||2
· Sfj ||2 (9)

and we compute the phase φ of the initial state of the modal
displacement for forces from a “drag and release” interaction
as:

φdrag(qfj (0)) = −φ(
f(0)

||f(0)||2
· Sfj ). (10)



(a) Input image (b) Motion derived W

Figure 1. We visualize input RGB images and corresponding
weights derived from the magnitude of motion texture.

2. Image-based rendering

In the main manuscript we describe how we use the predicted
motion magnitude to determine the contributing weight of
each source pixel mapped to its destination location, using
motion magnitude as a proxy for depth following the work
of Davis, et al. [4]. In particular, we compute a per-pixel
weight, W (p) = 1

T

∑
t ||Ft(p)||2 as the average magnitude

of the predicted motion texture in order to determine the
contributions of colliding source pixels at destination time
(shown in Fig. 1):

I ′t(p+ Ftp) =

∑
I0(p) ·W (p)∑

W (p)
. (11)

We use motion-derived weights instead of learnable ones
because we observe that in the single-view case, learnable
weights are not effective for addressing disocclusion ambi-
guities, as shown in the second column of Figure 2.

Moreover, we choose to perform per-frame independent
rendering instead of creating layered representations [17,
19], since we found that the latter configuration can lead
to significantly more visible artifacts and distortions near
object boundaries. In addition, since most of the motions we
produce are small, the method is only required to inpaint
relatively small unseen regions during rendering. Therefore,
we find that per-frame refinement is sufficient in our case.

3. Frequency-adaptive normalization

We show additional visualization of spectral volume coef-
ficients at different frequency in Fig. 3, where we observe

(a) Average-splat (b) Learned W (c) W from motion

Figure 2. From left to right, we show a rendered future frame with
(a) average splatting in RGB pixel space, (b) softmax splatting with
learnable weights [9], and (c) motion-aware feature splatting.
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Figure 3. Histogram of the amplitudes of Fourier terms across
frequencies after (1) scaling amplitude by image width and height
(blue), or (2) frequency adaptive normalization (red).

that our frequency-adaptive normalization redistributes coef-
ficients more evenly across different frequencies.

4. Additional implementation details
4.1. Network architecture

We use a VAE of continuous latent dimension 4 for each
frequency slice of the spectral volume, and use base channel
128 with channel multiplier 1, 2, and 4 for the VAE. We
perform whitening to normalize encoded VAE latent features.
For the 2D diffusion model, we use base channels of 128,
channel multipliers 1, 4, and 8, and attention resolutions
32, 16, and 8 for each block. We downsample the input
RGB image using a standard ResNet encoder to produce
16-channel features and concatenate them with a 4-channel
noisy latent (or Gaussian noise map during inference) before



Input image Reference Endo et al. [6] DMVFN [10] LFDM [15] Ours

Figure 4. Visual comparisons of generated future frames and corresponding motion fields. We show generated future frame (odd rows)
and estimated motion fields between the input and corresponding generated images. By inspecting differences with a reference image from
the ground truth video, we observe that our approach produces more realistic textures and motions compared with baselines.

feeding them to the denoising network.
During training, we use 1,000 diffusion steps, and a

square linear noise schedule to perform latent denoising.
We adopt Adam [11] to train the LDM model for 750K steps
with batch size 96 and initial learning rate 5−5. To avoid
overfitting, we apply random data augmentation by perform-
ing color jittering, random horizontal flips, random image
scaling, random rotation within five degrees, and random
crops. During inference, each step of DDIM sampling takes
0.5 seconds for motion prediction.

We adopt a ResNet-34 [8] as a feature extractor in our
image-based rendering module. Specifically, we encode I0
through a feature extractor network to produce a multi-scale
feature map M = {Mj |j = 0, ..., J}. For each individ-
ual feature map Mj at scale j, we resize and scale the
predicted 2D motion field Ft according to the resolution
of Mj . With the motion field Ft and weights W , we ap-
ply softmax splatting to warp the feature map at each scale
to produce a warped feature M ′j,t = Wsoftmax(Mj , Ft,W ),
whereWsoftmax is the softmax splatting operation. The image

synthesis network is based on a co-modulation StyleGAN
architecture [12, 21], where we inject both style features
mapped from Gaussian noise and warped features M ′j,t into
decoder blocks at athe corresponding scale to produce a final
rendered image Ît. We adopt Adam [11] to train the render-
ing model with batch size 32 and initial learning rate 10−4

for 300K iterations.

4.2. Data

As mentioned in the main manuscript, we collect and pro-
cess a set of 3,015 videos depicting scenes with oscillation
dynamics from online footage websites as well as from our
own captures. In terms of videos from online sources, we
collect this kind of footage by using query texts like “Static
shot, trees/flowers/candles/clothes/lanterns, wind/breeze”,
and we also use more specific names of everyday trees and
flowers to mine more data, (examples include maples, oak,
beech, elm, pine, spruce, redwood, rose, daisy, carnation,
tulips, chrysanthemum, dahlia, sunflowers, orchid, lily, iris,
cherry blossom, bushes, ivy, and dandelions). Furthermore,



we remove the clips with strong camera motions by checking
if 95% pixels have average magnitude of motion trajectory
larger than one pixel; we also remove the clips without scene
motion by checking if average magnitude of estimated mo-
tion trajectories is less than one pixel.

To generate ground truth spectral volumes, we find the
choice of optical flow method to be crucial. In particular,
we observe that deep-learning based flow estimators tend
to produce over-smoothed flow fields, which results in un-
realistic animation through image based rendering. Instead,
we apply a coarse-to-fine image pyramid-based flow algo-
rithm [2, 13] between selected starting image and every
future frame within a video sequence to derive motion trajec-
tory. We treat every 10th frame from each video as a starting
image, compute optical flows from the starting image and
the following 149 frames, and derive spectral volumes by
applying temporal FFT to the estimated per-pixel motion tra-
jectory and selecting the first K frequency slices in Fourier
domains.

4.3. Large video diffusion model baselines

AnimateDiff [7] Since the original implementation of An-
imateDiff only supports artificial images generated with Sta-
ble Diffusion as a starting frame, we perform DDIM inver-
sion [14] to generate a video from a given real input RGB
image. We use the model from Realistic Vision V2.0 as a
backbone since it is most related to the natural images and
motion we focus on. We manually add additional text inputs
according to the context of input picture. For example, we
use the prompt “flowers, wind, 8k uhd, dslr, soft lighting,
high quality, film grain, Fujifilm XT3” for an input image
depicting flowers.

ModelScope [20]. The ModelScope model is based on
the work of VideoComposer [20], which supports multi-
modaility inputs such as text, input, sketch, motion vectors
or depth maps. Therefore, we feed our input image to the
model to generate corresponding video clip.

GEN-2 [1]. GEN-2 is a recent commercial video genera-
tion solution that supports text- and image-to-video tasks.
For each input, we not only feed the image but also man-
ually provide text describing the image, as we found that
additional text descriptions systematically improve video
generation. For instance, for a picture of trees, we provide
the text prompt “A static shot of trees swaying in the wind,
masterpiece.”

User study. We perform a user study and compare our
generated animations with the three baselines mentioned
above. On a randomly selected 30 videos from the test set,
we ask users “which video is more realistic?”. A total of
35 users finished the study. We found a 71.1% preference
rate for our method over AnimateDiff, a 83.7% preference
rate over ModelScope, and a 82.6% preference rate over

GEN-2. We also provide visual video comparisons in the
supplementary website.

5. Additional qualitative comparisons

We provide additional comparisons of the quality of indi-
vidual frames and motions synthesized by our approach and
by other baselines [6, 10, 15] by visualizing the predicted
video frame Ît and its corresponding motion displacement
field at time t = 128. Figure 4 shows that the frames gener-
ated by our approach exhibit fewer artifacts and distortions
compared to other methods, and our corresponding 2D mo-
tion fields most resemble the reference displacement fields
estimated from the corresponding real videos. In contrast,
the background content generated by other methods tends
to drift, as shown in the flow visualizations in the even-
numbered rows. Moreover, the video frames generated by
other methods exhibit significant color distortion or ghosting
artifacts, suggesting that the baselines are less stable when
generating videos with long time duration.
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